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A model pursuit problem with incomplete information is conaldered. The case when the information sets [1-5] are intervals is 
studied. The major part of the paper is devoted to proving the optimality of the proposed inverse connection strategies. Modelline 
results are presented. 

One of the version.,; of the study of control problems with incomplete information on the phase vector 
is related to the change to the description of the state as a set of points in phase space compatible with 
the information on the behaviour of the system collected up to a given instant of time. Such sets are 
called information sets (IS). The problem can be stated as one of controlling the time variation of the 
IS with the view to minimizing some index. Since the IS depends on the current reading, minimax 
formulations arise naturally, in which the first player can exercise efficient control, while the other can 
choose the reading;. Many papers (see, for example, [1-5]) have been devoted to the formalization of 
such problems. Optimal solutions for a number of problems of this type (in which the IS are intervals) 
were obtained in [3, 6, 7]. 

1. DETAILED D E S C R I P T I O N  OF THE PROBLEM 

Two material pokats, the pursuer P and the evading party E, move in a plane. The pursuer measures 
the angular velocity of the line of sight at discrete instants of time ti and, applying impulse control at 
these instants, attempts to reduce the magnitude of the miscalculation. Large miscalculation is regarded 
as unsatisfactory (high-accuracy guidance). The impulses act orthogonaHy to a direction prescribed in 
advance and constant in time. Let o be the magnitude of a single impulse and N the total number of 
impulses. We denote by k(ti) the number of impulses of prescribed sign applied at a time ti (k(ti) is either 
a negative integer or a positive integer or zero), subject to the constraint ~ Ik(ti) I ~< N. The evading 
party can alter its own velocity of motion by choosing the acceleration vector u with components a)x 
and ~z, the control function ~ being subject to the condition I~ [ ~< v. 

The value of ¢om(J:i) measured at the time t i and the true angular velocity fO(ti) of the line of sight are 
related by com(ti) = ro(ti) + ~(ti). Here ~(ti) is the reading error, about which it is known only that I ~(ti) [ 
~< c, where c ~ 0 is a given constant. 

We shah assume lthat the nominal position/~ of the evading party and its nominal velocity vector VE 
are specified at the initial time to. We identify the origin of the difference system of coordinates with 
the pursuer (Fig. 1). We take the x-axis to be in the opposite direction to the vector ~" = ~'E -- Vp(to), 
where Ve(to) is the initial velocityveetor of the pursuer. Suppose that the pursuer chooses Ve(to) at to 
so that the x-axis pa~ses through E. We denote by z the axis perpendicular to x. The directions of the 
axes are constant with respect to t. We assume that the impulses act along the z-axis (economical use 
of resources in the course of conducting the pursuit). The initial position E(to) of the evading party and 
the initial velocity vector Ve(to) can differ from the preliminary prescribed values/~ and VE. We assume, 
however, that these differences are not too large. Let ct(t) be the current sighting angle, let Vx(t) be the 
component of the w~loeity difference along the x-axis, and let e be the length of V. 

In the x, z-coordinates the dynamic equations have the form 

~(t) = Dz - t ~ k ( t i ) ~ ) ( t  - t i ) ,  Yc(t) = Dx (1.1) 
i 

E l k ( t i ) l ~ N ,  
i 
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Fig. 1. 

The impulse interaction at time tl alters the velocity k by a jump of magnitude --ak(ti). 

2. T H E  DYNAMICS OF AN A U X I L I A R Y  D I F F E R E N T I A L  G A M E  

Using the relationship z(t) = x(t)tg a(t), we rewrite the original system (1.1) in a,  c0,x, Vx coordinates. 
We get 

~t(t) = co(t) 

(o(t) = - 2  V x (t)co(t) / x(t) - 2 tg Ot(t)co 2 (t) - sin a ( t )  cos a ( t ) ~  x / x ( t )  + 

+ cos 2 ot(t)D z I x ( t )  - ( ~  cos 2 a ( t )  I x ( t ) ) ~  k ( t  i )8( t  - fi ) (2.1) 
i 

:c(t) = Vxft), fzx(t) = ~x 

The system in terms of the equivalent coordinates proves convenient because the observed value co 
appears among the phase variables. Moreover, transition to various auxiliary problems differing by the 
degree of simplification becomes possible. In the present paper we shall confine ourselves to the simplest 
problem. We then use the resulting control algorithm in the original problem. A more complex auxiliary 
problem is considered in [8]. However, no optimal strategies have been found in the more complex 
case. 

We assume that the variation of the velocity difference vector arising during the motion because of 
the control exercised by the pursuer and the evading party is relative small (weak control). Because mis- 
calculations which are not too large are of interest here, this assumption implies that a must be small 
during a relatively long interval of motion starting from the initial time. Indeed, su~ose that a is large 
at some time t,. Since the cone on which the future motion can evolve is small and the axis of the cone 
is close to being vertical, the miscalculation at the end will clearly be significant, the longer the time 
between t. and the end the larger the miscalculation. We therefore assume a to be small. In the simplified 
formulation of the auxiliary problem we substitute zero for sin a and tan a,  and one for cos a.  Since 
co is the observed value and a does not appear in the relationship for 6~ any more, the equation c~(t) 
= co(t) can be discarded. We can therefore reduce the dimension of the phase vector by one. 

Let us make additional simplifications. As a result of the weak contro_l assumption, the miscalculation 
for a specific motion can be approximated (taking into account that V is directed along the x-ares) by 
computing the modulus of the z coordinate at the time when x(t) = 0. It turns out that the variation of 
the velocity along the z-axis has a more significant effect on the magnitude of the miscalculation than that 
along the x-axis. It follows that, simplifying (2.1), we can assume Vx(to) to be known precisely and equal to 

= -e, and the control function ux can be assumed to be identically zero. The variation of the co, x 
coordinates can be descrl~oed by 

co(t) = 2eco(t) / x ( t )  + ~z / x ( t )  - ( o  / x ( t ) )Y ,  k ( t  i )8( t  - t i) 
i 

x ( t )  = x ( t  o) - e ( t  - t o)  
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Finally, we assume thatx(t0) is specified precisely in the auxiliary problem. The behaviour of the system 
in the x direction is then uniquely defined. Denoting the final instant by O, we rewrite the relationship 
for ¢b(t) in the forta 

6)(t) = 2ca(t) I (0  - t) + ~z / e(O - t) - (~ / e(O - t))~, k(t  i)5(t - t i) (2.2) 
i 

The impulse interaction at ti causes ca to jump by --ffk(ti)/e(O - ti). Moreover, 7,/Ik(ti) I <- N.  
We shall adopt (2.2) as a description of the dynamics of the auxiliary differential game. Here is a list 

of indeterminacies 

carn( t i )=ca( t i )+~( t i ) ,  I~(t/)l ~<c, I1) z I~<v, ca(to)EA (2.3) 

where A is an intei,cal containing all values of the angular velocity at to possible because of the initial 
indeterminacy of x, z, ~; ~ in the difference system (1.1). The variation co is described by 

( o - i )  2 1 
i (O-x )Dz (x )dx  o ~ k( t i ) (O_t i  ) 

ca(t)=ca(t) - ~ - _ ~  + e ( O - t )  2 i e ( O - t )  2 ti~tLt] 

The maximum (minimum) value of the second component is attained for ~z -- v (~z --- -v). We set 

1 ' v( t - t ' )  ( 1 / 
~(t',t)= e ( O - t )  2 ! ( O - x ) v d x =  e-~_-~2 0 - ~ ( t + t )  

3. FORMALIZATION OF A D I F F E R E N T I A L  GAME WITH 
INCOMPLETE INFORMATION 

We will now formulate an auxih'ary differential game of two players, in which the state at time ti is 
represented by a pair consisting of the information set of the ca-axis and the remaining number of 
impulses. 

As the initial information set l_(to) we take an arbitrary interval on the co-axis. Consider the time ti 
and the interval L(ti)  , i >~ O. Le t  H(ti) -- {ca:  [ca  - ¢£~n(ti) I ~< C} be the indeterminacy set corresponding 
to the reading cam(ti). We set l(ti) = L(ti)  N H(ti) and assume that this product is non-empty. At the 
time ti, after taking: a reading, the first player, who chooses the impulses, can exercise his control. A 
rigid translation by --~k(ti)/e(O - t) will then carry the interval l(ti) into l+(ti). 

We define L(ti+l) to be the prediction of the position of (2.2) at ti+l given that l+(ti) is the state at 
time ti and no control is exercised by the first player during (ti, ti+l]. Let co. and ca* be the left and right 
ends of the intervals under consideration. The coordinate o~-(ti+D of the left end o f  L(ti+l) is equal 
to 

(0  - t i ) 2  
O ~ , _ ( t i + l )  = ca,+(t i) ( 'O~ii~l)2 - ;(ti , t i+ 1 ) (3.1) 

The coordinate ca*-(ti+D of the fight end is defined by (3.1) with ¢o.+(ti) replaced by ¢o*+(ti ) and with 
the sign of the last 1Lerm altered. 

Each of the sets l_(ti), l(ti), l+(ti) will be called an information set (prior to the reading, after the 
reading, and after the impulses). We also call L(ti) the prediction set. A recurrent sequence of information 
sets is thus defined. By the motion in the auxiliary game we mean the time variation of the information 
set and the remain~ag impulse number. The first player can choose the controlling impulses, while the 
other one can control the readings. We will take into account the effect of ~z when constructing the 
prediction set. When c = 0 the game under consideration turns into one with complete information. 
Then the measurement at time ti entails the choice of a point in I_(ti), which corresponds to the action 
of some control function ~z(t) in the interval [ti_l, ti). 

We denote by ~ the centre of the information interval, and by b its half-width. We have I = (cat, b) 
and I+_ =(cac+_, b+_). Le t  n+(ti) = n(ti) - k(ti). I f  k(ti) = 0, then I+(ti) = I(ti) and n+(ti) = n(ti). 

We take (ti, n, 1) to be the position of the game for the first player, ti being the time, n the remaining 
impulse number, and I the information set after the reading. A rule U: (ti, n, 1) --> k which assigns the 
number of impulses of given sign such that [ k I ~< n to a position of the game will be called an admissible 
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strategy of the  fust player. We call (ti, n , / - ) t h e  position of the game for the second player. Here/_ is 
the infonnati0n set before the reading (the prediction set). A rule ~: (ti, n, /-)  --> corn assigning a reading 
corn to the position will be called an admiss~le strategy of the second player. We require that/-  f3 H ~ ~ ,  
where H is the indeterminacy set constructed from COm. 

Specifying a pair U, t2 of admissible strategies, a step A of the discrete observation and control scheme, 
as well as the initial position (to, n(to), l_(to)), we can talk of the motion of the s2Ystem in time. Let us 
define the cost functional. For arbitrary co, t (t < ~) we set rI(co, t) = I co Je(~ - t), which is an approxi- 
mation of the passive predicted miscalculation at ~ t, i.e. the distance of the free motion of system 
(2.2) from zero at the time when x --- 0 (for an exact^computation, one would need to prescribe, in 
addition to ¢0, t, an angle co: I cole(~ - t)2/(cos 2 ~).  Let II(¢o, t) = II(co, t) + v(~ - t)2/2 be the maximum 
predicted miscalculation. 

We fix g ~> 0. We denote by t~ the closest time ti to the left of ~ - E. The number 

¢l)(to,n(to), I_(to), U,f~,A,~)=max{FI(¢o, te): o3el+(Q)} 

will be called the miscalculating corresponding to the initial position (to, n(to),/-(to)) and to U, f~, A, 
and ~. 

The best guarantees for the players are defined by 

['(l)(to,n(to) , [_(to)) = inf lim.lim s ~  O(to,n(to), l_(to), U, f2,A,~) 
U ~0 A~O 

l"¢2)(to,n(to), I_ (to)) = stump lira ~"~'o A"~ ulim inf~(to,n(to), /_(to), U, f2,A,~) 

Let us introduce the strategy Uo of the first player. We set 

k ° = [c°c ( ' i )~  O - ' i )  ] (3.2) 

Here the square brackets denote the integer part. We specify U_o as a function assigning to (ti, n, I) the 
number k u computed from (3.2) if Ik°l < n and n sign k0 if Ik°l > n. Since  /e(O - t) is the variation 
of (the modulus of) co due to a single impulse, the computations using (3.2) can be regarded as equating 
¢% (taking the sign into account) with the threshold (~/e(4) - t) equal to the effectiveness of a single 
impulse. Figure 2 illustrates this: it presents a possible variation of the information interval I under the 
action of U0. The directions of impulses are represented by horizontal arrows. 

We shall introduce the strategy fi0 of the second player. Let e0 ° be the end-point of l_(ti) at which 
the maximum of I~(¢o, ti) for co ¢ l_(ti) is attained. The point ¢o ° coincides with the point of l_(ti) furthest 
from zero. We define f~0 as follows: if o3 ° is the right end of/_(ti), then we set ~ = ¢0 ° - c; if ¢o ° is the 
left end, then ~ = m (1) = c. This means that the reading is taken in such a way as to ensure that the 

t" " " " ! "wors point ¢o from the prediction interval -(ti) falls into l(ti) and to obtain the maximum possible 
length of L(ti).The strategy t2 ° is independent of n(ti) at the time ti. 

Fb  z 
f ~  
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4. T H E  O P T I M A L I T Y  O F  U0 A N D  f~0 

The problem being studied is symmetric with respect to co. We therefore assume that the right end 
of  the information interval lies no closer to zero than the left one. If necessary, we replace the interval 
by the symmetric one. 

4.1. Standard motion 
We shall detemiine  the mot ion t ~ (n(t), l(t)), which will be called the standard motion (StM). It  

represents the variation of the information interval and the remaining impulse number  under continuous 
observation (where A is negligibly small) and control according to the strategies U ° and fl  °. We assume 
that the fight end of the current indeterminacy set coincides with the fight end of the information interval. 
The component  n(.) characterizes the impulse outlay. In the description of the StM we shall use the pre- 
vious notation: co. and co* for the left and right ends, etc. 

Assume that  co*(/') ~ 0 at some initial t ime/" and co*(/') ~ co*(/') - 2c. Let t ~ co*(t) be a piecewise 
continuous function describing the variation of the right end of I and let t --, co.(t) be the analogous 
function for the left end. Next, let the following conditions (1)--(3) be satisfied on the continuous pieces 
o f  co*('): 

I. ci)* (t) = 2co*(t) I (0 - t) + v / e(O - t), 

2. co,(t)~ > co*(t)-2c, 

3. if thenco.( t )>co*(t)-2c,  TO ~ . ( t ) = 2 c o , ( t ) l ( O - t ) - v l  e (O- t ) .  

We adopt  the following conditions (4)-(6) for the discontinuities of co*(.). 
4. I f t  ~ f is the instant of discontinuity for co*(.), then the jump A(o*(t) = co*+(t) - co*(t) is equal to 

--~k(t)le(O - t) for some positive integer k(t) ~ n(t), i.e. the discontinuity of co*(.) corresponds to k(t) 
impulses to the left. The new value (the right-hand limit with respect to t) for the left edge is computed 
from the formula ~ + ( t )  = ~ ( t )  + Aco*(t). 

5. The discontinuities of co*(-) for t > f occur at times when the centre of the interval coincides with 
the threshold o/e(~ - t). The  jump corresponds to a single impulse to the left. 

6. When a jump occurs at f ,  then k(/') can be defined as the smallest positive integer k ~< n(/`) such 
that co~÷(/`) = co~(f) - o k / e ( O - / ` )  < o /e (O- / ' ) .  In other words, k(/') is the smallest k for which the new 
centre 0~÷(/`) falls below the threshold o/e(O - / ` ) .  If k exceeds n(f) ,  then we set k(/`) = n(f).  

Let us specify n(.): 
7. t -* n(t) is a piecewise constant function defined by n( f )  = n(f )  - Zq<tk(tj), where tj ~>/" are the 

instants of discontinuity of co*(.). 
The  pair (n(-), /(.)) satisfying conditions (1)-(7) will be called the StM originating at (/`, n(i'), I(f)) .  

With the StM we ~ 0 c i a t e  the value F(F, n, 1) of a hypothetical miscalculation function, which we define 
as the maximum predicted miscalculation computed  for the StM at the time tj of the last impulse: F(F, 
,,, 1) = Ii(co*÷(t:), t:) 

4.2. Aux///ary assen~ns 
We shall state some properties of the motions of (2.2), the StM, and the hypothetical miscalculation 

functions.? 
1. Let COO)(.), co(2)(.) be the solutions of the differential equation (2.2) in [/', t'] originating from the 

state co0)(f) = co(2)(F), due to the control interactions ~(0(.), k0)(.) and ~))(.) = ~(2)(.), k(2)(.). We make 
the following assmnptions: ~))(.) = ~z(2)(.); k0)(t); takes positive integral values in a discrete set of times 
tx . . . .  , ta and vanishes at all other times; k(2)(t) = 0 for t ~ [/', t') and k(2)(t ') = ~--1 kO)(ts). Then ¢o0)(t ') 
~< co(2)(t'). This becomes an equality only when d = 1, ta = t'. 

2. Suppose that 1:he inequality o~(t') > co.(t') - 2c is satisfied for the StM at some instant t" > to. Then 
co.(t) > co*(t) - 2c for t e [t~ t'). Up  to the time t' the h.alf-width b(t) evolves inside any interval without 
impulses at the m~aimum possible rate described by b(t) = 2b(t)/(O - t) + v/e(O - t). 

tFor a detailed presentation see: KUMKOV S. I. and PATSKO V. A., A model pursuit problem with incomplete information. 
Preprint, Inst. Matem. i Melda. Ural'sk. Otd. Ross. Akad. Nauk, Ekaterinburg~ 1993. 
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3. Suppose that there are no impulses in (/', t') for a motion according to a discrete scheme given an 
arbitrary strategy U of the first player and the strategy ~0 of the second player. We assume that ¢o.(t') 
> ta*(t') - 2c. Then o3.(t) > ta (t) - 2c for t ~ (/', t') and b( t )  evolves in (f, t') at the maximum possible 
rate given by b(t) = 2b(t ) / (O - t) + v/e(0 - t). 

4. The hypothetical miscalculation function F is constant along the StM. 
We assert the monotonicity of the hypothetical miscalculation function in the following lemma. We 

set F (0 = F(~ n(i)(t), l(i)(t)), i = 1, 2. 

/.emma I. Let (t, n(1)(t), I(I)(0 ) and (t, n(2)(t),/'(2)(0 ) be two positions at time t such that n(1)(t) = 
n(2)(t), oc(1)(t) I> ¢Oc(2)(t), b(1)(t) I> b(2)(t). Then 

F (2) <~ F (!) <~ F (2) + (o)(l)*(t)- o~(2)*(t))e(O- t) 2 (4.1) 

The i n e q u a l i t y  F (2) ~ F (1) is also satisfied if nO)(t)  <<- n(2)(t) and ](1)(t) D I(2)(t). 
The following two assertions are concerned with the values F(t ,  n( t ) ,  I ( t ) ) ,  F(t ,  n ( t )  - 1, I+(t)) of F 

before and after a single impulse. 
5. L e t  (t, n( t ) ,  I ( t ) )  be an arbitrary position and let a single impulse to the right be applied. Then F 

does not decrease after the impulse. 
6. L e t  (t, n( t ) ,  l ( t ) )  be a position such that COc(t) < c~/e(O - t) (the centre below the threshold) and 

let a single impulse to the left be applied. Then F does not decrease after the impulse. 

4.3. Saddle  po in t  
Let K = [co., to*] be an arbitrary interval. We denote by Y(K) the interval whose right end coincides 

with co* and the left end is defined to be max {co., co*- 2c}. 

Lemma 2. The inequality 

O(to ,n( to) ,  l_(to),  U, f2°,A,e) ~> F( to ,n ( to )  , Y(/_(t0))) (4.2) 

is satisfied for any initial position ( t~ n(to), L( to) ) ,  any strategy U of the first player, and any A and 
g.  

Proof. By the real motion (RM) we mean the motion according to the discrete scheme and strategies U and ~0. 
The symbols referring to the RaM will be denoted by a bar. Those referring to the auxiliary StM will be denoted 
by a tilde. The main idea is that F is non-decreasing along the RM. We specify the times x~ . . . . .  Xm when the 
impulses act on the RM. 

A. We shah study the variation of F along the RM in an interval from xs to xs+l. Under the action of the impulses 
[ ( 'Q becomes [+(%). Properties (4)-(6) imply that 

F(xs,~+(Xs) , l+(Xs))>~F(Xs,E(~s), "[(Xs)), s= l  ..... m 

We shah establish the inequality 

F(Xs+l,~(Xs+l), "[(%+l))>~F(Xs,~+('cs), l+(xs)), s=l  ..... m- I  

(4.3) 

We start at StM from (xs, h+(~s), Ir+(xa)) and continue up to the time ~s+l. Let gs >! 0 be the number of 
impulses of the StM in [~  ~s+1). With the position (Zs+l, n(xs+l), l'('17s+1)) we  associate (qTs+l, nl('~s+l) , I'I('Us+I)), 
where ~1(~s+1) = nl('~s+l) "4- g, ~--- n+ ('~s)" The fight end ~*(~s+x) of the interval I'l(xs+l) is obtained by moving the 
impulses at ~*(%+1) to the right byes, and the half-width bl(xs+l) is equal to b(Xs+l)- We have F(zs+l) ' ~1(~s+1) , 
I'1(%+1)) = F('~s+l, ~1('Cs+l) , I'l('~s+l) ) (briefly, ffl = if). 

1 :~ 1 1 ~ 1 We shah prove the inequality F(xs+l), fi(Xs+l), -Y (Xs+x)) ~ F(xs+l), ~1~s+1), I" (xs+l)) (/~ ~ ff ). The argument 
"q+z will be omitted for brevity. Since the second player uses the strategy Q~, the right end of the information interval 

1 , ~  , 1 ~ 1 for the RM moves to the right at the maximum possible speed. By (1), we get ~ ~ ~ . If ~c ~ ~c, then I" C 
and the required inequality P/>/~1 follows from the second part of Lemma 1. Let ~1 c < ~c. When ~1 ~< b, we invoke 
the left inequality in (4.1). We assume that b < ~1. Then b < c. On the basis of (3), we find that the half-width b(t) 
evolves at the maximum possible speed in (%, ~s+l). Therefore b ~> b = ~1 This is a contradiction. 

It follows that/? >~ ffl. Since ffl = if, we have/~ t> ft. By the equality F(~s+ b n(~s+l), T(x~+I)) = F('q, h+(xs), 
lY+(x,)) the latter implies (4.4). 

By analogy with (4.4), one can prove the following inequality in the case when ~ > t o (i.e. when there is no 
impulse at the initial instant to) 

(4.4) 
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F(x~, ~(x~ ), l (x I )) ~> F(t o ,~(t o), l ( t  o )) 

Here the StM originates from (to, h(to),/(to)).  
B. From (4.3)-(4.5), we get 

F('~,n,~+ ('Crn), I+('~rn))~ > F('~m,'~('~m), ]('tm))>~ ... >~ 

>t F(Xs+l,K(Xs+l), "[(Xs+l))~ F(xs,K+(Xs), "[+(Xs))>~ F('~s,'~(Xs), l ( X s ) ) ~  ... >~ 

~> F(X 1 ,~'(X 1 ), l(Xl )) ~> F(t O,n(tO), l ( to))  

(4.5) 

Because the strategy ~0 is used, i(ti) = Y(L(t i ) )  at any time ti. Therefore F(to, h(t0), [(to)) ffi F(to, h(t0), Y( t ( t o ) )  
and F(t~ O, i+( t J )  - F(Xm, O, [+(x~,)). Taking into account that F(xm, O, 1+ (Xm)) >~ F(xm, h+(x,), l+(Xm)), O(to, 
h(to), [-(to), U, ~o, ,~ e) = F(te, O, [+(t~) ), h(to) = n(to) and [-(to) = l_(to), we arrive at(4.2). 

L e m m a  3. Fo r  any initial posi t ion ( t~  n(to),  L( to) ) ,  any s t rategy f l  o f  the  second player,  and  any  A 
and ~ the  inequal i ty  

• ( t o , n ( t o ) , L ( t o ) , U ° , f l ,  A , e )  <- 

<<. max{F( to ,n ( to ) ,  Y ( l _ ( t o ) ) ) +  r~A, [ r  2 + r3(e+ A) ] (e+  a)} (4.6) 

is satisfied, where  the  constants  rl, r2, r3 d e p e n d  only on the p a r a m e t e r s  o f  the  p rob lem.  

Proof. Here by the RM we mean the motion according to the discrete scheme and the strategies U ° and ~ The 
symbols referring to the RM will be denoted by a bar, and those referring to the auxiliary StM by a tilde. The main 
idea is to estimate the growth of F along the RM. We specify the instants xl . . . . .  Xm when the impulses act on the 
RM. Since the strategy 0" is used, the impulses are applied at those times of the discrete scheme when the centre 
of the RM ties either on or beyond the threshold. 

A. We shah study the variation of F along the RM in the interval between xs and x,+l. It follows from (4) that 

F('cs,n+('ts), 7+(~s))= F('ts,n('ts), i('ts)), s = l  ..... m (4.7) 

We start the StM from (x~. h+ (x~), [+ (x,)) and continue it until (x~+l). Let gs be the number of impulses for the 
StM in ['cs, X,+x). V~h: shah establish the inequality 

F(ts+l,n'(ts+l),  l ( ts+ I))~< F(ts,K+('Cs), l+( ' fs))+agsA, s = i ..... m - I  (4.8) 

We denote by f the closest time f ~ "cs+ 1 of the discrete scheme to the left of xs+l. It is possible for t '  to be equal 
to xs. 

We assume that f > xs. In this case the centre of the RM lies below the threshold at the time t'. We estimate ~*(t') 
by ~*(t'). If  there ~re no impulses of the StM in [~s, t'), then ~*( f )  ~< ~*(t'). 

We shah show that when there are impulses 

"~*( t ' )<~* (t ' )+f~ l e ( O - t ' )  (4.9) 

Let t ~ be the time of the last impulse of the StM up to f .  Then f > Xs, the centre of the StM coincides with the 
threshold at t", and b(t ~) ffi ~ ( t~ ) .  

When b(t ~) = c, we have 

b(t') ~ c <~ cV(O,t",t') = 8+ (t")V(O,t",t') <~ 8*( t ' )  

T(O, t" , t ' )  = ( O - t " )  2 / ( O - t ' )  2 

Let b(t #) < c. By_(2), we conclude that b(t) evolves at the maximum possible speed in [xs, t~). "lhking into 
account that b(xs) = b+(xs) and g' > xs, we get b ( : )  ~> b(t #) (even if t" is not an instant of the discrete scheme). We 
have 

b(t')~<- " . . . . . . .  - . . . . . . . . .  -* ' ~b(t )T(O,t ,t )+~(t ,t )~<O+(t )T(O,t ,t)+g(t ,t )=~ (t) 

Inequality (4.9) follows from the relationships ~*( f )  = ~c( f )  + b ( f )  and ~c( f )  < a/e( O - t'). 
Let f = xs. Then ~*+(t ')  = ~*(t'). 
We will now prove (4.8). We set hs = 0 f t '  = x, or f > x,, but [xs, t ') contains no impulses of the standard motion. 

We assume that hs = 1 if t' > xs and [xs, t') contains some impulses of the standard motion. Let q~s ~ 0 be the number 
1 of impulses of the st~mdard motion in [f, xs+l). With the position (~,+1, ~(xs+l), l(xs+l)) we associate (xs+b ~ (~+1), 

1 1 1, 1 7 (x,+l)), where ~ ('l:s+l) = n( 'gs+l)  + hs + IPs, the right end ~ (x,+l) o f / ( x , + l )  is obtained by moving the impulses 
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of ~*(xs+~) to the right byh, + ~ ,  and the half-width b~(xs+l) is equal to bl('lTs+l). We have F(%+1 , ~t(%+~), I1('I~s+1) ) 
-- F (%+1, n(%+~), [~(%+~)) (briefly, F~ = if). 

We assume that t" > %. At the time t" we start the motion of the system (2.2) from ~*(t'), with vz(t) --- v and 
k(ti) -~ 0. Let ~%+1) be the position of the motion at the time (%+1). We have ~*(%+0 ~< 6(x~+i). Let us equate 
~*(%+1) with ~ *(%+1). The following relations hold 

( / (o(%+i)=~*(t')y('O,t',Xs+l)+~(t',Xs+l)<~ ~*(t ')+ Ohs e (O- t ' )  V(0't"Xs+l )+~(t"Xs+~ ) 

t~* (Xs+ 1 ) = t~* (t')T(O,t','~s+l) +~(t',Xs+ I ) -  ~ o (0  - tj ) 
j=l e(O-Xs+l)  2 

- * O(hs + ~Ps ) 
&~*(~s+~)=O (%+~)4 e(O-%+~)  

Here tj (/" = 1, . . . .  ¢Ps) are the times of the impulses of the StM in the interval from t' to (%+1). To each j there 
corresponds one impulse. Furthermore 

&(xs+~)_6~.(%+~)<~[6.(t,)+ oh~ "~ . . . .  
e ( 0 - t ' ) J  7 (03  ,Xs+~)-da (t )7(O,t ,Xs+~ )+ 

k 

+ ~ o ( O - t j )  o(hs+~Ps ) _ Ohs(O-t" ) O(O-t j  

j=l e(O-'Cs+l) 2 - e(O-'Cs+l) e(O-'Cs+l) 2 + ~" ) j=l e(O- ' ts+l  ) 2 

° ( h s + % )  <~ ° ( h s + % ) ( d - t ' ) _  O(hs+ % )  = °(hs+~Ps)A 
e ( O -  Xs+ l) e ( O -  ~s+l)2 e ( O -  Xs+ !) e ( O -  Xs+ I )2 

As a result 

o(h s + ~0 s )A (4.10) 
"~*('Cs+I)<~61*(XS+I) + e(0 ,~s+l)2 

Let t" = "¢s. The estimate (4.10) also holds when hs = 0. In the above argument ~*(t') should be replaced by ~,( t ' ) .  
One must also take into account that there may be several impulses at t" = to. 

Let us set P = F(%+1, h(%+0, i(%+1))- We shall prove the inequality 

-ff ~ ~1 +o(hs +q~s) A (4.11) 

The argument %+1 will be omitted for brevity. 
Let co -1° < ~*. We assume that ~1 < b. Then ~ < ~c. This is indeed obvious when ~1 = ~. Let ~Z < b. If b < c, 

then half-width b(t) evolves at the maximum possible speed in [%, %+ 1) (property 2). Since b(%) = b+ (%), it follows 
that b > b. As a result, ~1 = ~ > b. We have a contradiction. If b = c, then ~1 = c. Since ~1. < ~ . ,  we get ~ = 
~1. _ c < ~* - c < ~c- The estimate (4.11) follows from Lemma 1, inequality (4.10), and the relationship ~1 < 
h. We assume that ~1 > b and set P = ('61, ~1), ~1 = -~. _ ~1, h 1 = h, ~ = F(%+I, ~1, ~1), and 1 ~ = F(Xs+ 1, h 1,/1). 
Applying Lemma 1, we obtain ~ ~< ffl when ~c 1 < ~1c, and bq < ffl + o(hs + js)A when ~1 c > ~1 c. Since ]'1 = I ,  it 
follows that P ~< pt  <~/~l + o(h, + js)A. 

Let ~* > ~*. We assume that ~I < b. Then b = ~I < c. It follows that b(t) evolves at the maximum possible 
speed in [%, %+i) (property 2). Since b(%) = b+(%), it follows that b ~ b-. As a result, ~i = b -  > b-. We have a 
contradiction. We assume that ~i >~ b. By Lemma i, we obtain ff >I F. 

Therefore,/~ and / ~I a reby  (4.11). Since (h~ + ~Ps) ~<g~ andff l  = F, it follows from (4.11) that 

F(Xs+l,K('Cs+l), "]('ts+l))<~F(Xs+l,~(Xs+l), l('¢s+l))+Ogs A, s = l  ..... m - I  

Since F('Cs+l, n('[s+l), l('[s+l)) m F(%, h+(%),/+(Xs+l) ) the latter implies (4.8). 
By analogy with (4.8), one can prove the following inequality for Xl > to (i.e. when there is no impulse at the 

initial instant to) 

F(xt,~(x~ ). l( 'q ))<~ F(to,~(to), ](t0) ) +OgoA (4.12) 

where go is the number of impulses of the StM in [to, Xl) starting from the position (to, h(to),/(to)). 
B. We consider the time Xm <~ tt of the last impulse for the RM. First, we assume that h+(xm) = 0. This means 

that all impulses have been spent. Using (4.7), (4.8), (4.12), and the relationsgs <~ h+(%) <~ N and m <~ N, we obtain 

F(xm,O,'[+('Cm) ) = F(Xm,E+ (Xm) , i+(x=))=  F('fm,~(Xm) , ]('~ra))<~ 

<~ F(to,~(to), I ( to ) )+oN(N+I)A  
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Since f l  is an arb itr~a'y strategy, we have F( ti, fz ( ti ), I (~) ) <<- F( ti, h ( ti ), Y([-(ti) ) ) at any time ti by Le_mma 1. Therefore 
F(to, h(to), i(t0)) ~ ~F(to, R(t0), Y(L(to))) and F(Q, O, l+(te) ) ~ F('c,n, O, I +('cm) ). Since O(to, R(t0), I_(to), U ~, II, A, e) 
= F(t~, O, I+(te) ), ~(,t0) = n(to) and l_(to) = I_(to), it follows that 

O(to,n(toJ , ~-(to) , U°, f l ,  A ,ey~F(to ,n( to) ,  Y( / - ( to) ) )+qA (4.13) 

where the constant r I depends only on the parameters of the problem. 
We assume that R+ (xm) = 0. Then the centre co-~+ (t~. of the RM lies below the threshold at te. It follows 

that F(te, O, "[+ (t~)) ~ [o/e(O - t~) + c]e(O - t~) 2 + v(O - t~)2/2. Using the inequality 0 - t~ ~ e + A, we get F(t~, O, 
I+ (te)) ~ [o + (ce + v/2)(e + A)](e + A). As a result 

¢P(to,n(to), /_(to), U°,f~,A,~)~<[r2 +r3(e+A)](~+A) (4.14) 

where the constants r 2 and r 3 depend only on the parameters of the problem. 
By combining (4.13) and (4.14), we obtain (4.6). 

Theorem. In  the  case when  x0 = x ° the  strategies U ° and  ~0 are  opt imal .  M o r e o v e r  

FO)(to,n(to), l_(to))=FC2)(to,n(to), /-(to))=F(to,n(to), Y(/_(to))) 

Proof.  Us ing  (4.2) and (4.6), we get  

Ei2)(to,n(to), ~-(to), ~ ° ) = l i m  lim i n f~ ( to ,n ( to ) ,  l_(to), U, f 2 ° , A , ~ ) ~  

>>.: F(to,n(to),r(l_(to))) 

L!l)(to,n(to), /_(to), U°)=lim lim sup¢(to,n(to), /..(to), U°,E~,A,c)~ < 
~-,o A~o 

<<.~ F(to,n(to) , Y(/-(to))) 
It follows that 

F(2)(to,n(to), /-(to))>---L(2)(to,n(to), /-(to),~°)~ > F(to,n(to), Y(l_(to)))>~ 

>~ L¢~)(to,n(to), /-(to),U°)~ Fa)(to,n(to), /_(to)) (4.15) 

On the other hand, we have :2)(t o, n(to), l_(to)) <~ I'<l)(to, n(to), l_(to)) directly from the definition of 
I "<~), I -<2). All the terms in (4.15) are therefore equal. 

5. R E S U L T S  O F  M O D E L L I N G  

We denote by SM the control method in ( 1.1 ) corresponding to the strategy U °. We shah compare the SM method 
with the FK control method using galman's  filtration of the angular velocity of the line of sight. The Kalman filter 
was programmed for a model whose dynamics is described by (2.2), the observation and control are realized with 
step A and the pe~arbations have a normal distribution with zero mean. The variances were given by the maximum 
possible deviations determined by the geometrical constraints in (2.3). The following perturbations are taken into 
account in the model: the dynamical miscalculation due to the acceleration ~z, the variance being computed from 
the formula (v/3)2; the error in measuring the angular velocity, the variance being taken equal to (c/3)z; the initial 
spread of the angular velocity, the variance of which is computed as the half-width of A. The relationships of the 
recurrent step-by-step estimation are similar to those in [9]. Under the action of the filter, the angular velocity is 
estimated at each step of the discrete scheme, the impulse control in (1.1) being developed using the threshold 
a/x(t) as if this est~naate where equal to the exact value. 

The initial values x(t0) and Vx(t0) are assumed to be known by the pursuer and equal to 80,000 and -5000 m/s, 
respectively. The indeterminacy of the initial horizontal position is Izl ~< 20oo m, and that of the horizontal 
component of the i~aitial velocity vector is [ Vz [ <~ 100 m/s. The magnitude of a single impulse is o -- 5 m/s and N 
-- 70 is the numbe:r of impulses. The acceleration of the evading party is us -- 0 vertically and [~zi  ~< V = 2 m/s 2 
horizontally. The error in measuring the angular velocity of the line of sight is bounded by c = 0.0009 rad/s. The 
step is equal to A := 0.1 and the threshold e = 0.1. The initial information set I_(to) = A is an interval with end 
points ~.( t0)  = (-100 × 80,O00 - 5O00 x 2O00)/80,O002 and co_*(t0) = (100 x 80,0O0 + 50OO × 2000)/80,0O0 2. Since 
the true value of the angular velocity is computed from the formula co(t) ffi (~(t)x(t) -~(t)z(t))/(x~(t) + z~(t)), I_(to) 
contains all values co that are possible because of the initial position and velocity indeterminacy. 

Talking of the methods of forming the readings of O~n(ti) and the acceleration ~ ,  we shah indicate two versions, 
namely, RNN and GM. 
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RNN. At each time ti, the quantity t~(t~) is obtained using a random number generator with a normal distribution 
in the interval [to(ti) - c, to(ti) + c], where to(ti) is the true angular velocity of the line of sight. By analogy, the 
acceleration ~z(ti) is chosen from [-v, v] and kept constant within A. 

GM. In this version con is produced in a similar way to the construction of f~0 described in Section 3, but subject 
to the condition that tom(ti) must lie inside the interval [t0(t/) - c, to(ti) + c]. We choose ton as follows: if too lies at 
the fight (left) end of the interval I_(ti) , we define O~n(ti) so that the right (left) end of H(O~n(ti) ) lies as close as possible 
to this point. We ch~x~se Uz anew at each time ti and keep it constant in [ti, ti+l). I f  the point too computed at tj+l 
coincides with the right end of  I-(ti+l), then we take uz(ti) = v. If it coincides with the left end, then uz(ti) = - v .  

In Fig. 3 we present the t-dependence of the observed and true angular velocities tom and to realizing the impulse 
control for the comhinations SM-RNN and SM-GM, given the initial coordinates X(to) = 80,000, Z(to) = 100 m,  
£(t0) = -5000 m/s, and ~:(t0) = 20 m/s. The time is measured in seconds and the angular velocity in rad/s. The left 
column corresponds to the combination SM-RNN, the right one to SM-GM. In the first case the miscalculation 
amounts to 0.15 m, and 28 impulses are used. In the other case the values are 0.22 m and 58 impulses. Similar 
graphs for the combinations FK-RNN and FK-GM and the same initial coordinates are shown in Fig. 4. A graph 
for the output tot of the Kalman filter is added. The miscalculation for the FK-RNN combination amounts to 
0.99 m, and for FK-43M it equals 51.35 m. "I~n impulses were used in the former case and 70 in the latter. This 
means that the noise in the game makes it necessary to apply a much larger number of impulses. In the case FK-GM 
the entire supply of 70 impulses was used, resulting in a large miscalculation. 
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